
Add to Cart
Сильно интегрированный мотор постоянного магнита безредукторной передачи нестандартной конструкции
Что мотор постоянного магнита одновременный?
Мотор постоянного магнита одновременный (PMSM) тип электрического двигателя который работает используя постоянные магниты врезанные в своем роторе. Он также иногда назван безщеточный мотор AC или одновременный мотор постоянного магнита.
В PMSM, статор (неподвижная деталь мотора) содержит серию катушек которые подпитаны в последовательности для создания вращая магнитного поля. Ротор (вращающая часть мотора) содержит серию постоянных магнитов которые аранжированы, что производят магнитное поле которое взаимодействует с магнитным полем произведенным статором.
По мере того как 2 магнитного поля взаимодействуют, ротор вращает, производящ механическую энергию которую можно использовать для того чтобы привести машинное оборудование или другие приборы в действие. Потому что постоянные магниты в роторе обеспечивают сильное, постоянн магнитное поле, PMSMs сильно эффективно и требует, что меньше энергии работает чем другие типы электрических двигателей.
PMSMs использовано в большом разнообразии применений, включая электротранспорты, промышленное машинное оборудование, и бытовые приборы. Они известный за их высокая эффективность, низкие требования к техническому обслуживанию, и точный контроль, который делает ими популярный выбор для много разных видов систем.
Анализ принципа технических преимуществ мотора постоянного магнита
Принцип мотора постоянного магнита одновременного следующим образом: В замотке статора мотора в трехфазное течение, после пропуск-в течении, он сформирует вращая магнитное поле для замотки статора мотора. Потому что ротор установлен с постоянным магнитом, поляк постоянного магнита магнитный зафиксирован, согласно принципу магнитных поляков такого же участка привлекая различное отталкивание, вращая магнитное поле произведенное в статоре будет управлять ротором для того чтобы вращать, скорость вращения ротора равен к скорости вращая поляка произвел в статоре.
Моторы AC постоянного магнита (PMAC) имеют широкий диапазон применений включая:
Промышленное машинное оборудование: Моторы PMAC использованы в разнообразие применениях промышленного машинного оборудования, как насосы, компрессоры, вентиляторы, и механические инструменты. Они предлагают высокую эффективность, плотность наивысшей мощности, и точный контроль, делая их идеальным для этих применений.
Робототехника: Моторы PMAC использованы в применениях робототехники и автоматизации, где они предлагают высокую плотность вращающего момента, точный контроль, и высокую эффективность. Они часто использованы в робототехническом оружии, grippers, и других системах контроля за движением.
Системы HVAC: Моторы PMAC использованы в топлении, вентиляции, и системах кондиционирования воздуха (HVAC), где они предлагают высокую эффективность, точный контроль, и малошумные уровни. Они часто использованы в вентиляторах и насосах в этих системах.
Системы возобновляющей энергии: Моторы PMAC использованы в системах возобновляющей энергии, как ветротурбины и солнечные отслежыватели, где они предлагают высокую эффективность, плотность наивысшей мощности, и точный контроль. Они часто использованы в генераторах и системах слежения в этих системах.
Медицинское оборудование: Моторы PMAC использованы в медицинском оборудовании, как машины MRI, где они предлагают высокую плотность вращающего момента, точный контроль, и малошумные уровни. Они часто использованы в моторах которые управляют двигающими частями в этих машинах.
Зависящ от того, насколько магниты прикреплены в ротор и дизайн ротора, моторы постоянного магнита одновременные можно расклассифицировать в 2 типа:
Поверхностный мотор постоянного магнита одновременный (SPMSM)
Внутренний мотор постоянного магнита одновременный (IPMSM).
SPMSM устанавливает все магниты частей магнита на поверхности, и мест IPMSM внутри ротора.
Моторы постоянного магнита одновременные с внутренними магнитами: Максимальный выход по энергии
Мотор постоянного магнита одновременный с внутренними магнитами (IPMSM) идеальный мотор для применений тракции где максимальный вращающий момент не происходит при максимальном скорость. Этот тип мотора использован в применениях которые требуют высокой емкости динамики и перегрузки. И также идеальный выбор если вы хотите приводиться в действие вентиляторы или насосы в ряде IE4 и IE5. Высокие цены приобретения обычно компенсировать через энергию - сбережения над продолжительностью времени, при условии, что вы приводитесь в действие его с правым переменным приводом частоты.
Наши мотор-установленные переменные приводы частоты используют интегрированную стратегию контроля основанную на MTPA (максимальном вращающем моменте в ампер). Это позволяет вам привестись в действие ваши моторы постоянного магнита одновременные с максимальным выходом по энергии. Перегрузка 200%, превосходный начиная вращающий момент, и выдвинутый ряд управления скоростью также позволяют вам полно эксплуатировать оценку мотора. Для быстрого спасения цен и самых эффективных процессов управления.
Моторы постоянного магнита одновременные с внешними магнитами для классических применений сервопривода
Моторы постоянного магнита одновременные с внешними магнитами (SPMSM) идеальные моторы когда вам нужно высокие перегрузки и быстрое ускорение, например в классических применениях сервопривода. Вытянутый дизайн также приводит в инерции малой массы и может оптимально быть установлен. Однако, один недостаток системы состоя из SPMSM и переменного привода частоты цены связанные с ним, как дорогая технология штепсельной вилки и высококачественные кодировщики часто использованы.
Почему вы должны выбрать IPM мотор вместо SPM?
1. Высокий вращающий момент достиган путем использование вращающего момента нежелания в дополнение к магнитному вращающему моменту.
2. Моторы IPM уничтожают до 30% меньше силы сравненной к обычным электрическим двигателям.
3. Механическая безопасность улучшена как, не похож на в SPM, магнит не разделит должное к маховой силе.
4. Оно может ответить высокоскоростному вращению мотора путем контролировать 2 типа вращающего момента используя векторное управление.
Как улучшить эффективность мотора?
Для того чтобы улучшить эффективность мотора, суть уменьшить потерю мотора. Потеря мотора разделена в механическую потерю и электромагнитную потерю. Например, для асинхронного двигателя AC, настоящие пропуски через статор и замотки ротора, которые произведут медную потерю и потерю проводника, пока магнитное поле в утюге. Он причинит вихревые токи принести около потерю гистерезиса, высокие гармоники магнитного поля воздуха произведут случайные потери на нагрузке, и будут потери носки во время вращения подшипников и вентиляторов.
Для уменьшения потери ротора, вы можете уменьшить сопротивление замотки ротора, использовать относительно толстый провод с низкой резистивностью, или увеличьте площадь поперечного сечения слота ротора. Конечно, материал очень важен. Условная продукция медных роторов уменьшит потери около 15%. Настоящие асинхронные двигатели по существу алюминиевые роторы, поэтому эффективность настолько не высока.
Подобно, медная потеря на статоре, который может увеличить сторону слота статора, увеличить полный коэффициент слота слота статора, и сокращают длину конца замотки статора. Если постоянный магнит использован для замены замотки статора, то никакая потребность пройти настоящее. Конечно, эффективность можно очевидно улучшить, которая основная причина, по которой одновременный мотор более эффективен чем асинхронный двигатель.
Для потери утюга мотора, листы высококачественного кремния стальные можно использовать для уменьшения потери гистерезиса или длину металлического стержня можно удлинить, который может уменьшить плотность магнитного потока, и может также увеличить изолируя покрытие. К тому же, процесс термической обработки также критический.
Проведение вентиляции мотора более важно. Когда температура высока, потеря конечно будет большая. Соответствуя охлаждая структуру или дополнительный охлаждая метод можно использовать для уменьшения потери трением.
гармоники Высоко-заказа произведут случайные потери в замотке и металлическом стержне, которая могут улучшить замотку статора и уменьшить поколение гармоник высоко-заказа. Обработку изоляции можно также выполнить на поверхности слота ротора, и магнитную грязь слота можно использовать для уменьшения магнитного влияния слота.
Немного небольших проблем которые легко обозены о моторе
1. Почему нельзя general motors использовать в зонах плато?
Высота имеет отрицательные влияния на повышении температуры мотора, короне мотора (высоковольтном моторе) и коммутировании мотора DC. Следующие 3 аспекта должны быть замечены:
(1) высокий высота, высокий повышение температуры мотора, низкий сила выхода. Однако, когда температура уменьшает с увеличением высоты достаточно для того чтобы возмещать потерю влияние высоты на повышении температуры, сила требуемой производительности мотора может остаться неизменно;
(2) измерения Анти--короны должны быть приняты когда высоковольтный мотор использован в плато;
(3) высота не хороша для коммутирования мотора DC, поэтому внимания оплаты к выбору материалов щетки углерода.
2. Почему мотор не соответствующий для деятельности легкой нагрузки?
Когда мотор побежит на легкой нагрузке, он причинит:
(1) фактор силы мотора низок;
(2) эффективность мотора низка.
(3) оно причинит отход оборудования и неэкономичную деятельность.
3. Почему не смогите мотор начало в холодной окружающей среде?
Чрезмерная польза мотора в окружающей среде низкой температуры причинит:
(1) отказы изоляции мотора;
(2) носить замораживания тавота;
(3) напудрен порошок припоя соединения провода.
Поэтому, мотор следует быть нагрет и сохранен в холодной окружающей среде, и замотки и подшипники должны быть проверены перед бегом.
4. Почему не может мотор 60Hz использовать электропитание 50Hz?
Когда мотор конструирован, лист стали кремния вообще работает в регионе сатурации кривой замагничивания. Когда напряжение тока электропитания постоянн, уменьшение частоты увеличит магнитный поток и течение возбуждения, приводящ в росте потребления мотора настоящего и медного, которое окончательно приведет к росту повышения температуры мотора. В строгих случаях, мотор может сгореться должным к перегревать катушки.
мягкое начало 5.Motor
Мягкое начало ограничивало энергосберегающее влияние, но оно может уменьшить удар запуска по энергосистеме, и может также достигнуть ровного начала защитить блок мотора. Согласно теории сбережений энергии, должной к добавлению относительно сложной управляемой схемы, мягкое начало не только не сохраняет энергию, и также увеличивает энергопотребление. Но оно может уменьшить начиная течение цепи и сыграть защитную роль.