
Add to Cart
Генератор N2 для индустрии батареи лития с очищенностью scfm емкости 100 99,999% 110 psig
Рассмотрены, что будет продукция азота которая унесена используя технологию адсорбцией качания давления (PSA) над сеткой углерода молекулярной (CMS) зрелым, рентабельным и сильно эффективным методом для произведения азота соотвествовать широкий диапазон требований к очищенности и подачи. Продолжающийся повышения эффективности в PSA основанных на объектах азот-поколения управляются увеличенными материалами CMS (диаграммой 1) и технологическими прогрессами. Эта статья предусматривает обзор принципов PSA основанного на поколения азота, пока фокусирующ специфически на новаторских практиках и улучшенных материалах CMS. Совместно, эти выдвижения вносят вклад в непрерывное улучшение в системной производительности PSA, давая операторам установки индустрий химического процесса (CPI) доказанный путь произвести надежную и недорогую поставку высокочистого сухого азота на месте.
ДИАГРАММА 1. лепешки молекулярной сетки углерода (CMS), типично изготовленные от раковин кокоса, снабжает поверхностную необходима область и структуру поры отдельные кислород и азот от обжатого потока воздуховода
Азот — как в газообразном, так и в жидком виде — использует в широком диапазоне применений в много промышленных секторов. Эти включают продукцию еды и напитков, химикатов и фармацевтической продукции; обработка нефти; термальная обработка металлов; изготовление плоского стекла, полупроводников и электроники; и еще многие. Промышленные объекты которые требуют больших томов азота всегда ищут эффективные методы приобъектной продукции азота для того чтобы соотвествовать всем спецификациям связанным с очищенностью, требованиями к подачи, расходом энергии, следом ноги и удобоносимостью
Газ азота произведен путем отделять воздух в свои основные компонентные молекулы (азот и кислород), используя один из 2 методов: 1. традиционная криогенная фракционировка воздуха который был разжижен; или разъединение 2. газообразного воздуха используя адсорбцию качания давления (PSA) или основанные на мембран системы разъединения. Если большие тома азота с весьма особой чистотой (99,998%) необходимы, то криогенная фракционировка воздуха остается самым эффективным и самым экономическим вариантом технологии [2]. Это самый старый метод продукции азота, и оно имеет способность произвести и газообразный и жидкий азот (для ежедневной пользы и как резервная поставка). Криогенная фракционировка воздуха типично унесена в широкомасштабных коммерчески заводах которые после этого поставляют произведенный азот к потребителям.
Однако, на много объектов CPI, обогащенный азот произведен на месте используя более мелкомасштабное разъединение PSA или основанные на мембран системы разъединения. Системы PSA приводятся в действие дальше принцип физической адсорбции кислорода в воздухе материалами молекулярной сетки углерода (как те показанные в диаграмме 1), выходя обогащенный поток азота как продукт; процесс проиллюстрирован в диаграмме 2. Сегодняшние системы PSA могут экономически произвести азот от обжатого воздуха на разнообразие томах. Например, сегодняшние системы могут отрегулировать поток воздуха входа меньше чем 5 000 к больше чем 60 000 STD ft3/h, надежно производя N2 который соотвествует очищенности от 95 до 99,9995%
ДИАГРАММА 2. Внутри лепешки CMS, кислород преференциально адсорбирован, позволяющ азот-богатому потоку продукта быть захваченным для пользы на месте
Однако, столица и производственные затраты системы PSA сразу сопоставлены с очищенностью азота произвели, и эти цены взбираются быстро раз азот с очищенностью более большой чем 99,5% необходимы. В некоторых случаях, оно может быть рентабелен произвести более высокочистый азот сперва производить азот очищенности 99,5% используя систему PSA, и после этого используя палладиум или медный блок для того чтобы извлечь остаточные уровни кислорода в продукте азота. Такие системы могут принести вниз остаточный кислород до 1-3 ppm.
ВЫБИРАТЬ ПРАВИЛЬНУЮ СИСТЕМУ
Выбирая самый соотвествующий процесс азот-продукции, несколько параметров должны быть рассмотрены. Очищенность и емкость большинств важные факторы которые могут повлиять на выбор методологии продукции, и следовательно, имеют сразу удар по удельной себестоимости азота произвели. Польза системы азот-поколения PSA, которую можно конструировать для встречи всех типов и картин подачи азота — устойчивый, периодический и перекатный — растет в популярности во время последнее несколько десятилетьего, спасибо простота, представление, гибкость, надежность и относительно низкие столица и производственные затраты этого маршрута продукции.
Однако, оптимальный тариф азот-продукции используя систему PSA основанную на лепешках CMS около 3 000 произведенное Nm3/h N2 (очищенность >95%). Внутри этот ряд, PSA более экономический вариант чем сжижение O2/N2-separation самолетом и криогенное разъединение, или основанным на мембран разъединением. Принципы PSA основанной на технологии азот-поколения используя CMS и несколько важных аспектов ноу-хау эксплуатационной инженерии обсужены ниже.
СЕТКИ УГЛЕРОДА МОЛЕКУЛЯРНЫЕ
CMS часть особенного класса активированных углей которые имеют некристаллическую (аморфическую) структуру с относительно узким распределением пор-размера. Этот материал предусматривает молекулярные разъединения основанные на тарифе адсорбции азота, а не разницы в емкости адсорбцией между кислородом и азотом. На диаграмму 2 показано внутреннюю структуру материала CMS который соотвествующий для разъединения (удаления) молекул O2ий от молекул N2 во входе обжимать-воздуха, для того чтобы произвести обогащенный поток азота (примечание: Сетки углерода молекулярные выборочны для кислорода, пока сетки цеолита молекулярные выборочны для азота).
Особенности и преимущества
Деталь | Очищенность азота (Nm3/hr) |
Размеры |
Вес | ||||||
95% | 99% | 99,5% | 99,9% | 99,99% | 99,995% | 99,999% | (L*W*H) mm | KG | |
OSP5 | 21 | 13 | 11 | 8 | 5 | 4,2 | 3 | 1100*600*1700 | 300 |
OSP10 | 38 | 29 | 25 | 15 | 10 | 7,5 | 6,1 | 1200*650*1800 | 350 |
OSP20 | 80 | 56 | 52 | 32 | 20 | 16 | 14 | 1600*1000*2200 | 450 |
OSP40 | 160 | 116 | 105,2 | 67,2 | 40 | 34 | 28 | 1800*1000*2200 | 600 |
OSP60 | 252 | 174 | 157,8 | 100,8 | 60 | 51 | 45 | 1900*1200*2200 | 750 |
OSP80 | 339,2 | 232 | 211 | 132 | 80 | 70 | 62 | 2000*1200*2400 | 980 |
OSP100 | 420 | 290 | 263 | 168 | 100 | 90 | 78 | 2100*1600*2500 | 1300 |
OSP150 | 630 | 435 | 394,5 | 252 | 150 | 135 | 120 | 2500*1800*2600 | 1600 |
OSP200 | 848 | 580 | 526 | 336 | 200 | 180 | 160 | 2800*1900*2850 | 2200 |
OSP250 | 1060 | 725 | 657,5 | 420 | 250 | 225 | 200 | 3100*2000*3200 | 2600 |
OSP300 | 1270 | 870 | 780 | 500 | 300 | 260 | 240 | 3900*2600*3400 | 3850 |
OSP400 | 1696 | 1160 | 1052 | 672 | 400 | 360 | 320 | 4500*3250*3600 | 5000 |
OSP500 | 2120 | 1450 | 1300 | 840 | 500 | 450 | 400 | 4900*3600*3800 | 6500 |
OSP600 | 2540 | 1740 | 1578 | 1000 | 600 | 540 | 480 | 5300*3600*3900 | 7800 |
OSP800 | 3390 | 2320 | 2100 | 1340 | 800 | 720 | 640 | 5600*3900*4100 | 10200 |
OSP1000 | 4240 | 2900 | 2630 | 1680 | 1000 | 900 | 800 | 5800*4000*4500 | 11800 |
Ссылка дизайна:
Я обжат воздуховод давление 7,5 бар) (g/108 psi (g)
Воздух качественные 1.4.1 согласно 8573-1:2010 ISO
Азот выход давление 6 бар) (g/87psi (g)
Азот качественные 1.2.1 согласно 8573-1:2010 ISO.
Проектная работа ℃ 50 температуры максимальное
Оросите пункт на выходе азота - ℃ 40
Примечания:
OSP азот генератор максимальный работающ давление 10 бар) (g/145psi (g)
После запроса азота PSA приобъектного будет подгонян генератор:
Деятельность давление >10 бар) (g/145 psi (g)
Пункт росы < - ℃ 50
Подключи и играй
Передвижной/containerized
Другие особенные требования согласно условиям места